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Abstract 
Beckwith-Wiedemann Syndrome (BWS; OMIM 130650) is an overgrowth disorder characterized by 
macrosomia, macroglossia, organomegaly and developmental abnormalities (in particular abdominal wall 
defects with exomphalos). Its incidence is estimated to be 1 per 13,700 live births. BWS patients are 
prone to the development of embryonal tumors (most commonly Wilms’ tumor or nephroblastoma). BWS 
is a multigenetic disorder caused by dysregulation of gene expression in the imprinted 11p15 
chromosomal region. Various 11p15 defects have been implicated and epigenetic defects account for 
about two thirds of cases. The management of patients with BWS involves the surgical cure of 
exomphalos and monitoring of hypoglycemia in the neonatal period. It also involves the treatment of 
macroglossia and the screening for embryonal tumor that can be facilitated by genotyping. A recent series 
of reports suggested that assisted reproductive technology (ART) may increase the risk of imprinting 
disorders, and BWS in particular. 
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Disease name and synonyms 
Beckwith-Wiedemann syndrome (BWS) 
Exomphalos-Macroglossia-Gigantism syndrome 
(EMG syndrome) 

Definition 
BWS is an overgrowth disorder involving 
developmental abnormalities. This multigenic 
disorder is caused by dysregulation of the 
expression of imprinted genes in the 11p15 
chromosomal region. 
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Diagnosis criteria 
(for references see: Wiedemann HR, 1964; 
Pettenati MJ et al., 1986; Elliott M et al., 1994; 
DeBaun MR et al., 1998)  
The phenotypic expression of BWS is variable 
and diagnosis is still based on clinical signs. 
Recent improvements in the molecular diagnosis 
of BWS and other overgrowth disorders suggest 
that in the next few years, BWS will be defined 
molecularly. 
It is generally accepted that diagnosis of BWS 
requires at least 3 clinical findings including at 
least 2 major findings:  
Major clinical findings  
- Macroglossia (present in more than 95% of 
patients).  
- Macrosomia or overgrowth, defined as pre- 
and-/-or postnatal growth greater than the 97th 
percentile (present in about 80% of patients). 
The trend to increased size continues through 
early childhood but becomes less dramatic with 
increasing age.  
- Abdominal wall defects (exomphalos, umbilical 
hernia, diastasis recti; 65% of patients).  
- Organomegaly involving principally abdominal 
organs: kidneys, liver, spleen, pancreas and 
adrenal glands (present in 50% of patients).  

Minor clinical findings  
- Hypoglycemia in the neonatal period (occurs in 
about 40% of patients), mostly mild and 
transient.  
- Renal abnormalities: malformations, medullary 
dysplasia.  
- Ear creases and pits (30% of patients).  
- Facial nevus flammeus (30% of patients).  
- Hemihyperplasia (30-35% of patients).  
- Embryonal tumors: about 7.5% of BWS 
patients develop tumors (Wilms’ tumor, 
neuroblastoma, adrenal carcinoma, 
hepatoblastoma, rhabdomyosarcoma), most 
commonly in the first 6 years of life.  
- Polyhydramnios. 

Differential diagnosis 
Clinically, BWS must be distinguished from other 
overgrowth syndromes: 
- Simpson-Golabi-Behmel syndrome (OMIM 
312870) is an X-linked disease caused by 
mutations in the gene encoding glypican-3, an 
extracellular proteoglycan known to play an 
important role in growth control in embryonal 
mesoderm tissues, in which it is selectively 
expressed. This proteoglycan binds IGF2, 
reducing its availability to the type 1 IGF-
receptor (Pilia G et al., 1996; Neri G et al., 
1998). 
- Perlman syndrome (OMIM 267000), which is 
often more severe, has a high perinatal mortality 
rate. Its pathogenesis is still unknown (Grundy 
RG et al., 1992; Henneveld HT et al., 1999). 

- Sotos syndrome (OMIM 117550) is caused by 
mutations in the gene encoding NSD1 and 
should be considered for differential diagnosis 
because of the clinical overlap with BWS (Baujat 
G et al., 2004).  
BWS must also be recognized in its incomplete 
forms (Sotelo-Avila C et al., 1980) and in related 
forms, such as non-syndromic IGF2 overgrowth 
disorder (Morison IM et al., 1996). Some cases 
of isolated hemihyperplasia are also related to 
abnormalities in the 11p15 region and are 
associated with a risk of tumor (Hoyme HE et al., 
1998). 

Prevalence 
The incidence of BWS (1 per 13,700 livebirths) 
has been reported in only one study (Thorburn 
MJ et al., 1970) and is probably underestimated.  

Etiology 
BWS is caused by imprinting errors in the 11p15 
chromosomal region (Maher ER et al., 2000; 
Reik W et al., 2001) This region includes genes 
encoding growth factors and tumor suppressor 
genes. The paternally expressed genes 
(maternally imprinted) have growth enhancing 
activity and the maternally expressed genes 
(paternally imprinted) have growth suppressing 
activity. The 11p15 region is organized into two 
domains: a telomeric domain including the IGF2 
and H19 genes and a centromeric domain 
including the CDKN1C (Cyclin Dependant 
Kinase Inhibitor 1C), KCNQ1 (Potassium 
voltage-gated channel, subfamily Q, member 1) 
and KCNQ1OT1 (KCNQ1-Overlapping transcript 
1) genes. Each domain is controlled by its own 
imprinting center (IC1 and IC2 for the telomeric 
and the centromeric domains, respectively) (Reik 
W et al., 2001). 
BWS is a multigenic disorder involving various 
molecular abnormalities in the 11p15 region 
(Engel JR et al., 2000; Bliek J et al., 2001; 
Gaston V et al., 2001; Weksberg R et al., 2001; 
DeBaun MR et al., 2002). 

• Cytogenetic abnormalities account for 1-
2% of cases and consist of maternally 
inherited translocations or inversions 
and trisomy with paternal duplication.  

• The genetic abnormalities described in 
BWS are:   

- 11p15 paternal uniparental disomy (UPD) of 
both the centromeric and telomeric domains. In 
paternal UPD, the maternal allele is lost and the 
paternal allele is duplicated. This occurs in 
approximately 20% of cases.  
- Mutations in the CDKN1C gene (also known as 
p57KIP2) encoding a maternally expressed cell-
cycle regulator, found in about 5% of patients 
(Lam WW et al., 1999). Patients with CDKN1C 
gene mutations have a typical BWS phenotype, 
with a very high frequency of exomphalos. 
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Mutations in the CDKN1C gene are much more 
frequent in familial BWS and about 60% of 
familial BWS cases are caused by mutation of 
the CDKN1C gene.  

• The epigenetic abnormalities described 
in BWS are:  

- Hypermethylation of the H19 gene, a 
maternally expressed untranslated RNA with 
tumor suppressor function, found in 10% of 
cases.  
- Demethylation of KvDMR1, a differentially 
methylated region at the 5’ end of the 
KCNQ1OT1 gene, involved in 55-60% of 
patients. The KCNQ1OT1 gene (also known as 
LIT1 or KvLQT1-AS) encodes an antisense 
transcript within intron 10 of the KCNQ1 gene 
and is normally expressed from the paternal 
allele (Lee MP et al., 1999; Smilinich NJ et al., 
1999). This gene may be involved in regulating 
imprinting of the centromeric domain (Cleary MA 
et al., 2001; Fitzpatrick GV et al., 2002).  
- It was recently shown that microdeletions within 
IC1 (H19 DMR) (Sparago A et al., 2004) or IC2 
(Niemitz EL et al., 2004) account for a low 
percentage of BWS cases with hypermethylation 
of H19 or demethylation of KCNQ1OT1. 
However, the exact frequency of these 
microdeletions is still unknown. 

Genotype/phenotype correlations 
The clinical expression of BWS may differ 
between patients with similar molecular 
abnormalities, due to the mosaicism distribution 
for most known molecular defects. This is well-
illustrated for 11p15 UPD (Itoh N et al., 2000). 
Other genotype/phenotype correlations have 
also been observed, providing evidence that 
aspects of the BWS phenotype may be 
correlated with the involvement of specific 
imprinted genes (Engel JR et al., 2000; Gaston 
V et al., 2001; DeBaun MR et al., 2002). Indeed, 
exomphalos is more frequent in patients with a 
defect of the centromeric domain (demethylation 
of KCNQ1OT1 and mutation of CDKN1C). 
Hemihyperplasia and organomegaly are more 
frequent in patients with hypermethylation of H19 
or 11p15 UPD. 
About 7.5 to 10% of BWS patients will develop a 
tumor. Wilms’ tumor is the most common tumor 
found in patients with BWS (60% of all tumors), 
but other solid childhood tumors also are found. 
Previous studies (Engel JR et al., 2000; Bliek J 
et al., 2001; Gaston V et al., 2001; Weksberg R 
et al., 2001; DeBaun MR et al., 2002) have 
clearly shown that 11p15 UPD and H19 
hypermethylation are strongly associated with 
tumor risk in BWS patients. Wilms’ tumor is only 
found in BWS patients with molecular lesions in 
the telomeric domain and is the only type of 
tumor found in patients with H19 
hypermethylation (Bliek J et al., 2004). Patients 

with molecular lesions in the centromeric domain 
(demethylation of KCNQ1OT1 or mutation of 
CDKN1C) have a low risk of tumor and these 
patients develop a different spectrum of tumors, 
including hepatoblastoma, rhabdomyosarcoma 
and gonadoblastoma (Weksberg R et al., 2001, 
Bliek J et al., 2004). The only tumor reported in 
patients with mutation of CDKN1C is 
neuroblastoma (Lee MP et al., 1997; Gaston V 
et al., 2001). 

Diagnostic methods 
Careful cytogenetic analysis of the 11p15 region 
and fluorescent in situ hybridization (FISH) can 
be used to recognize the rare translocations, 
inversions and trisomies.  
Molecular diagnosis is difficult, mostly because 
of the large spectrum of genetic and epigenetic 
abnormalities. Molecular tests must differentiate 
the various abnormalities in the 11p15 region: 
patients with 11p15 paternal UPD, patients with 
hypermethylation of the H19 gene, patients with 
demethylation of the KCNQ1OT1 gene and 
patients with a mutation in the CDKN1C gene.  
As demethylation of the KCNQ1OT1 gene is 
never associated with abnormal methylation of 
the H19 gene except in patients with 11p15 
paternal UPD, analysis of the methylation status 
of both the KCNQ1OT1 and H19 genes leads to 
the diagnosis of more than 90% of 11p15 
defects:  
- Isolated demethylation of the KCNQ1OT1 
gene.  
- Isolated hypermethylation of the H19 gene.  
It is not yet possible to determine precisely the 
percentage of cases with epigenetic defects 
displaying a microdeletion of IC1 or IC2.  
Hypermethylation of the H19 gene associated 
with demethylation of the KCNQ1OT1 gene is 
indicative of 11p15 paternal UPD, which should 
be confirmed by analysis of markers of the 
11p15 region and of parental DNA. 11p15 
paternal UPD always occurs as mosaicism and, 
because tissue distribution of mosaicism is 
variable, tissue from a second source (such as 
fibroblasts) may be helpful.  
If the methylation status of the KCNQ1OT1 and 
H19 genes is normal, then sequencing of the 
CDKN1C gene is indicated, particularly in 
patients with exomphalos and/or a family history 
of BWS. 

Management of BWS patients 
Neonates with exomphalos should undergo 
abdominal wall repair soon after birth.  
Hypoglycemia during the first few days of life can 
be anticipated by monitoring glycemia in 
newborns with BWS every six hours for the first 
few days. Serious neurological sequelae can 
therefore be prevented.  
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Macroglossia should be treated by a maxofacial 
surgical team.  
Assessing tumor risk is the main difficulty in 
patients with BWS. Between 7.5% and 10% of 
all BWS patients will develop a tumor, mostly 
during the first 6 years of life. The severity of the 
phenotype, hemihyperplasia and organomegaly 
(of the kidneys in particular) have been shown to 
be associated with an increase in the relative 
risk of cancer (Schneid S et al., 1997; Beckwith 
JB, 1998; DeBaun MR et al., 1998; Gaston V et 
al., 2001) but none of these clinical features can 
identify with certainty patients likely to develop 
tumors. Based on molecular analysis, it is now 
possible to discriminate between BWS patients 
with high and low tumor risks. It is also possible 
to predict whether patients are at risk of 
developing Wilms’ tumor. Different screening 
protocols could therefore be offered to BWS 
patients, based on molecular diagnosis. In BWS 
patients with a telomeric defect (30% of cases), 
tumor management should involve abdominal 
ultrasound scans every 3 months, with clinical 
examination at alternate consultations, during 
the first 6 years of life. In BWS patients with a 
centromeric defect (70% of cases), tumor 
management should involve monthly clinical 
examinations during the first year, with a 
reference abdominal ultrasound scan at 3 
months, followed by a clinical examination every 
3 months for 6 years.  
Plasma alpha-fetoprotein (AFP) levels have 
been put forward as a possible marker for 
routine tumor screening in children with BWS. 
AFP levels should be interpreted with a normal 
curve established specifically for BWS as AFP 
concentration is higher in patients with BWS 
than in healthy infants and children (Everman 
DB et al., 2000; Clericuzio CL et al., 2003). 

Genetic counseling 
Most of BWS are sporadic (85%) but about 15% 
BWS cases correspond to familial forms. The 
risk of recurrence in a family depends on the 
genetic cause of BWS in the proband.  
Cytogenetic abnormality:  
The risk to siblings of patients with BWS is up to 
50% in case of a maternal 11p15 translocation 
or inversion. This risk is not clearly defined in 
BWS patients with an 11p15 duplication 
inherited from a father carrying a balanced 
translocation involving chromosome 11p15. 
CDKN1C mutation:  
The risk to siblings of patients with BWS is up to 
50% if the mother has the mutated CDKN1C 
gene. The children of a woman with a CDKN1C 
mutation have a 50% risk. The children of a man 
with a CDKN1C mutation have a theoretical risk 
of 0%, but with 50% of them will carry the 
mutation and the disease may be transmitted by 
girls to the next generation.  

11p15 UPD:  
The risk of recurrence is very low in cases of 
paternal UPD, as UPD results from a post-
zygotic event.  
Epigenetic abnormalities:  
Although rare, there are familial forms of BWS 
involving demethylation of KCNQ1OT1, which 
are maternally transmitted. A microdeletion of 
the KCNQ1OT1 gene has been identified in one 
of these familial forms (Niemitz EL et al., 2004). 
A few patients with hypermethylation of H19 
have also been shown to display a maternally-
inherited microdeletion within IC1 (Sparago A et 
al., 2004). The recurrence risk for siblings and 
offspring of BWS patients with demethylation of 
KCNQ1OT1 or hypermethylation of H19 is 
probably low. However, the frequency of 
microdeletions of imprinting centers is unknown 
and it is therefore difficult to generate an 
accurate figure for risk estimation. 

Antenatal diagnosis 
Prenatal diagnosis by ultrasound scan can be 
used to assess fetal growth and to detect 
abdominal wall defects, thereby helping to 
prevent neonatal complications. 
Cytogenetic testing is appropriate for the 
diagnosis of translocation, inversion or 
duplication. Molecular diagnosis is also possible 
for 11p15 paternal UPD or CDKN1C gene 
mutation.  
The reliability of testing for epigenetic 
modifications is unknown. 

Beckwith-Wiedemann syndrome and 
assisted reproductive technology 
Syndromes involving epigenetic alterations have 
recently been reported to occur in animals and 
humans conceived by ART. These include large 
offspring syndrome (LOS) in ruminants (Young L 
et al., 2001), BWS (DeBaun M et al., 2003; 
Gicquel C et al., 2003; Maher ER et al., 2003; 
Halliday J et al., 2004) and Angelman syndrome 
(Cox GF et al., 2002; Orstavik K et al., 2002) in 
humans. Various genetic and epigenetic 
mechanisms are involved in BWS and Angelman 
syndrome, but, following ART, the molecular 
defect in these imprinting disorders, always 
involves a loss of methylation of a maternally-
imprinted methylated gene (demethylation of 
KvDMR1/KCNQ1OT1 in BWS) suggesting that 
ART impairs the acquisition or maintenance of 
methylation marks on maternal imprinted genes. 
No specific procedure has yet been implicated in 
the epigenetic risk of ART-conceived patients. 
Indeed, ART-conceived Angelman syndrome 
and BWS patients were conceived by various 
procedures including classical IVF, ICSI, embryo 
cryopreservation, early or late embryo transfer, 
the use of various culture media (Cox GF et al., 
2002; Orstavik K et al., 2002; DeBaun M et al., 
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2003; Gicquel C et al., 2003; Maher ER et al., 
2003; Halliday J et al., 2004; Chang AS et al., 
2005). Large-scale and long-term outcome 
studies in children born as a result of ART 
should make it possible to estimate the exact 
risk of imprinting disorders after ART and to 
identify the underlying cause of this association. 
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